miércoles, 2 de mayo de 2007

"REFRACCION"

*DEFINICION DE REFRACCION*

Se denomina índice de refracción al cociente de la velocidad de la luz en el vacío y la velocidad de la luz en el medio cuyo índice se calcula. Se simboliza con la letra n y se trata de un valor adimensional.
n = c / v
donde:
c: la velocidad de la luz en el vacío
v: velocidad de la luz en el medio cuyo índice se calcula (agua, vidrio, etc.).
La letra "n" representa el índice de refracción del medio.



*TIPOS DE REFRACCION*

_Refaccion de la luz:Se produce cuando la luz pasa de un medio de propagación a otro con una densidad óptica diferente, sufriendo un cambio de velocidad y un cambio de dirección si no incide perpendicularmente en la superficie. Esta desviación en la dirección de propagación se explica por medio de la ley de Snell.

_Refraccion de sonido:Es la desviación que sufren las ondas cuando el sonido pasa de un medio a otro diferente. A diferencia de lo que ocurre en la reflexión, en la refracción, el ángulo de refracción ya no es igual al de incidencia.

_REFRACCION DE ONDAS DE RADIO: es un fenómeno que se observa en todo tipo de ondas. En el caso de las ondas de radio, la refracción es especialmente importante en la ionosfera, en la que se producen una serie continua de refracciones que permiten a las ondas de radio viajar de un punto del planeta a otro.

_REFRACCION DE ONDAS SISTEMATICAS:Otro ejemplo de refracción no ligado a ondas electromagnéticas es el de las ondas sísmicas. La velocidad de propagación de las ondas sísmicas depende de la densidad del medio de propagación y, por lo tanto, de la profundidad y de la composición de la región atravesada por las ondas. Se producen fenómenos de refracción en los siguientes casos:
Refracción entre la transición entre dos capas geológicas, especialmente entre el manto y el núcleo.
En el manto, por pequeñas desviaciones de la densidad entre capas ascendentes menos densas y descendentes, más densas.


_LEY DE REFRACCION:La relación entre el seno del ángulo de incidencia y el seno del ángulo de refracción es igual a la razón entre la velocidad de la onda en el primer medio y la velocidad de la onda en el segundo medio, o bien puede entenderse como el producto del indice de refraccion del primer medio por el seno del angulo de incidencia es igual al producto del indice de refraccion del segundo medio por el seno del angulo de refracción. Esto es; n1senθ1 = n2senθ2
,donde:n1 = índice de refracción del primer medio
θ1 = Angulo de Incidencia
n2 = índice de refracción del segundo medio
θ2 = Angulo de Refracción

sábado, 21 de abril de 2007

teorias de origen de la luz

CONCEPCIONES TEÓRICAS SOBRE LA NATURALEZA DE LA LUZ
Los antiguos filósofos ya conocían algunos hechos sobre la naturaleza y propagación de la luz. Así se atribuye a Euclides el descubrimiento de las leyes de la reflexión de la luz (300 años a.C.). Pero es a mediados del siglo XVII cuando aparecen casi conjuntamente dos teorías acerca de la naturaleza de la luz. El genial científico inglés Isaac Newton, en la segunda mitad del siglo XVII, y su compatriota contemporáneo Christian Huygens, desarrollaron la óptica y la teoría acerca de la naturaleza de la luz.



TEORÍA CORPUSCULAR
Newton descubre en 1666 que la luz natural, al pasar a través de un prisma es separada en una gama de colores que van desde el rojo al azul. Newton concluye que la luz blanca o natural está compuesta por todos lo colores del arcoiris.
Isaac Newton propuso una teoría corpuscular para la luz en contraposición a un modelo ondulatorio propuesto por Huygens. Supone que la luz está compuesta por una granizada de corpusculos o partículas luminosos, los cuales se propagan en línea recta , pueden atravesar medios transparentes y ser reflejados por materias opacas. Esta teoría explica la propagación rectilínea de la luz, la refracción y reflexión; pero no explica los anillos de Newton (irisaciones en las láminas delgadas de los vidrios), que sí lo hace la teoría de Huygens como veremos más adelante, ni tampoco los fenómenos de interferencia y difracción.
Newton, experimentalmente demostró que la luz blanca, al traspasar un prisma, se dispersa en rayos de colores y que éstos, a su vez, al pasar por un segundo prisma no se descomponen, sino que son homogéneos. De esta descomposición de la luz deduce y demuestra que al dejar caer los rayos monocromáticos sobre un prisma, éstos se recombinan para transformarse en luz blanca. Se desprende así que ésta resulta de una combinación varia de rayos coloreados que poseen diferentes grados de refrangibilidad; desde el violeta –el más refrangible- hasta el rojo –que tiene el menor índice de refracción -. La banda de los colores prismáticos forma el espectro, cuya investigación y estudio conduciría, en la segunda mitad del siglo XIX, a varios hallazgos ribeteados con el asombro.
Tal como ya lo enunciamos en párrafos precedentes, Newton consideró a la luz semejante a un flujo de proyectiles que son emitidos por un cuerpo que genera luminosidad. Supuso que la visión era la consecuencia de la colisión de granizadas de proyectiles que impactaban en los ojos. Con su hipótesis corpuscular, intentó explicar el hermoso fenómeno de los anillos de colores engendrados por láminas delgadas (los famosos anillos de Newton) e interpretó igualmente la refracción de la luz dentro de la hipótesis corpuscular, aceptando que las partículas luminosas, al pasar de un ambiente poco denso (aire) a otro más denso (cristales), aumentan su velocidad debido a una atracción más fuerte. Esta conclusión, en nada es coincidente, como veremos más adelante, con la teoría ondulatoria de la luz, la que propugna una propagación más lenta de la luz en el paso a través de materiales más densos.
La teoría sobre una naturaleza corpuscular de la luz, sustentada por el enorme prestigio de Newton, prevaleció durante el siglo XVIII, pero debió ceder hacia mediados del siglo XIX frente a la teoría ondulatoria que fue contrastada con éxito con la experiencia. Ahora, como también veremos más adelante, el descubrimiento de nuevos fenómenos ha llevado –sin arrinconar la teoría ondulatoria- a una conciliación de ambas ponencias teóricas.




TEORÍA ONDULATORIA
Propugnada por Christian Huygens en el año 1678, describe y explica lo que hoy se considera como leyes de reflexión y refracción. Define a la luz como un movimiento ondulatorio semejante al que se produce con el sonido. Ahora, como los físicos de la época consideraban que todas las ondas requerían de algún medio que las transportaran en el vacío, para las ondas lumínicas se postula como medio a una materia insustancial e invisible a la cual se le llamó éter (cuestión que es tratada con mayores detalles en la separata 4.03 de este mismo capítulo).
Justamente la presencia del éter fue el principal medio cuestionador de la teoría ondulatoria. En ello, es necesario equiparar las vibraciones luminosas con las elásticas transversales de los sólidos sin que se transmitan, por lo tanto, vibraciones longitudinales. Aquí es donde se presenta la mayor contradicción en cuanto a la presencia del éter como medio de transporte de ondas, ya que se requeriría que éste reuniera alguna característica sólida pero que a su vez no opusiera resistencia al libre transito de los cuerpos sólidos. (Las ondas transversales sólo se propagan a través de medios sólidos.)
En aquella época, la teoría de Huygens no fue muy considerada, fundamentalmente, y tal como ya lo mencionamos, dado al prestigio que alcanzó Newton. Pasó más de un siglo para que fuera tomada en cuenta la Teoría Ondulatoria de la luz. Los experimentos del médico inglés Thomas Young sobre los fenómenos de interferencias luminosas, y los del físico francés Auguste Jean Fresnel sobre la difracción fueron decisivos para que ello ocurriera y se colocara en la tabla de estudios de los físicos sobre la luz, la propuesta realizada en el siglo XVII por Huygens.
Young demostró experimentalmente el hecho paradójico que se daba en la teoría corpuscular de que la suma de dos fuentes luminosas pueden producir menos luminosidad que por separado. En una pantalla negra practica dos minúsculos agujeros muy próximos entre sí: al acercar la pantalla al ojo, la luz de un pequeño y distante foco aparece en forma de anillos alternativamente brillantes y oscuros. ¿Cómo explicar el efecto de ambos agujeros que por separado darían un campo iluminado, y combinados producen sombra en ciertas zonas? Young logra explicar que la alternancia de las franjas por la imagen de las ondas acuáticas. Si las ondas suman sus crestas hallándose en concordancia de fase, la vibración resultante será intensa. Por el contrario, si la cresta de una onda coincide con el valle de la otra, la vibración resultante será nula. Deducción simple imputada a una interferencia y se embriona la idea de la luz como estado vibratorio de una materia insustancial e invisible, el éter, al cual se le resucita.
Ahora bien, la colaboración de Auguste Fresnel para el rescate de la teoría ondulatoria de la luz estuvo dada por el aporte matemático que le dio rigor a las ideas propuestas por Young y la explicación que presentó sobre el fenómeno de la polarización al transformar el movimiento ondulatorio longitudinal, supuesto por Huygens y ratificado por Young, quien creía que las vibraciones luminosas se efectuaban en dirección paralela a la propagación de la onda luminosa, en transversales. Pero aquí, y pese a las sagaces explicaciones que incluso rayan en las adivinanzas dadas por Fresnel, inmediatamente queda presentada una gran contradicción a esta doctrina, ya que no es posible que se pueda propagar en el éter la luz por medio de ondas transversales, debido a que éstas sólo se propagan en medios sólidos.
En su trabajo, Fresnel explica una multiplicidad de fenómenos manifestados por la luz polarizada. Observa que dos rayos polarizados ubicados en un mismo plano se interfieren, pero no lo hacen si están polarizados entre sí cuando se encuentran perpendicularmente. Este descubrimiento lo invita a pensar que en un rayo polarizado debe ocurrir algo perpendicularmente en dirección a la propagación y establece que ese algo no puede ser más que la propia vibración luminosa. La conclusión se impone: las vibraciones en la luz no pueden ser longitudinales, como Young lo propusiera, sino perpendiculares a la dirección de propagación, transversales.
Las distintas investigaciones y estudios que se realizaron sobre la naturaleza de la luz, en la época en que nos encontramos de lo que va transcurrido del relato, engendraron aspiraciones de mayores conocimientos sobre la luz. Entre ellas, se encuentra la de lograr medir la velocidad de la luz con mayor exactitud que la permitida por las observaciones astronómicas. Hippolyte Fizeau (1819- 1896) concretó el proyecto en 1849 con un clásico experimento. Al hacer pasar la luz reflejada por dos espejos entre los intersticios de una rueda girando rápidamente, determinó la velocidad que podría tener la luz en su trayectoria, que estimó aproximadamente en 300.000 km./s. Después de Fizeau, lo siguió León Foucault (1819 – 1868) al medir la velocidad de propagación de la luz a través del agua. Ello fue de gran interés, ya que iba a servir de criterio entre la teoría corpuscular y la ondulatoria. La primera, como señalamos, requería que la velocidad fuese mayor en el agua que en el aire; lo contrario exigía, pues, la segunda. En sus experimentos, Foucault logró comprobar, en 1851, que la velocidad de la luz cuando transcurre por el agua es inferior a la que desarrolla cuando transita por el aire. Con ello, la teoría ondulatoria adquiere cierta preeminencia sobre la corpuscular, y pavimenta el camino hacia la gran síntesis realizada por Maxwell.
TEORÍA ELECTROMAGNÉTICA
S i bien en la capítulo 04 de este ensayo nos referiremos a ella con una relativa extensión, cuando hablemos del electromagnetismo, aquí podemos señalar sucintamente que fue desarrollada por quien es considerado el más imaginativo de los físicos teóricos del siglo XIX, nos referimos a James Clerk Maxwell (1831-1879). Este físico inglés dio en 1865 a los descubrimientos, que anteriormente había realizado el genial autodidacta Michael Faraday, el andamiaje matemático y logró reunir los fenómenos ópticos y electromagnéticos hasta entonces identificados dentro del marco de una teoría de reconocida hermosura y de acabada estructura. En la descripción que hace de su propuesta, Maxwell propugna que cada cambio del campo eléctrico engendra en su proximidad un campo magnético, e inversamente cada variación del campo magnético origina uno eléctrico. Dado que las acciones eléctricas se propagan con velocidad finita de punto a punto, se podrán concebir los cambios periódicos - cambios en dirección e intensidad - de un campo eléctrico como una propagación de ondas. Tales ondas eléctricas están necesariamente acompañadas por ondas magnéticas indisolublemente ligadas a ellas. Los dos campos, eléctrico y magnético, periódicamente variables, están constantemente perpendiculares entre sí y a la dirección común de su propagación. Son, pues, ondas transversales semejantes a las de la luz. Por otra parte, las ondas electromagnéticas se transmiten, como se puede deducir de las investigaciones de Weber y Kohlrausch, con la misma velocidad que la luz. De esta doble analogía, y haciendo gala de una espectacular volada especulativa Maxwell termina concluyendo que la luz consiste en una perturbación electromagnética que se propaga en el éter. Ondas eléctricas y ondas luminosas son fenómenos idénticos.


Veinte años más tarde, Heinrich Hertz (1857-1894) comprueba que las ondas hertzianas de origen electromagnético tienen las mismas propiedades que las ondas luminosas, estableciendo con ello, definitivamente, la identidad de ambos fenómenos.
Hertz, en 1888, logró producir ondas por medios exclusivamente eléctricos y, a su vez, demostrar que estas ondas poseen todas las características de la luz visible, con la única diferencia de que las longitudes de sus ondas son manifiestamente mayores. Ello, deja en evidencia que las ondas eléctricas se dejan refractar, reflejar y polarizar, y que su velocidad de propagación es igual a la de la luz. La propuesta de Maxwell quedaba confirmada: ¡la existencia de las ondas electromagnéticas era una realidad inequívoca! Establecido lo anterior, sobre la factibilidad de transmitir oscilaciones eléctricas sin inalámbricas, se abrían las compuertas para que se produjera el desarrollo de una multiplicidad de inventivas que han jugado un rol significativo en la evolución de la naturaleza humana contemporánea.
Pero las investigaciones de Maxwell y Hertz no sólo se limitaron al ámbito de las utilizaciones prácticas, sino que también trajeron con ellas importantes consecuencias teóricas. Todas las radiaciones se revelaron de la misma índole física, diferenciándose solamente en la longitud de onda en la cual se producen. Su escala comienza con las largas ondas hertzianas y, pasando por la luz visible, se llegan a la de los rayos ultravioletas, los rayos X, los radiactivos, y los rayos cósmicos.
Ahora, la teoría electromagnética de Maxwell, pese a su belleza, comporta debilidades, ya que deja sin explicación fenómenos tan evidentes como la absorción o emisión; el fotoeléctrico, y la emisión de luz por cuerpos incandescentes. En consecuencia, pasado el entusiasmo inicial, fue necesario para los físicos, como los hizo Planck en 1900, retomar la teoría corpuscular. Pero la salida al dilema que presentaban las diferentes teorías sobre la naturaleza de la luz, empezó a tomar forma en 1895 en la mente de un estudiante de dieciséis años, Albert Einstein, que en el año 1905, en un ensayo publicado en el prestigioso periódico alemán Anales de la física, abre el camino para eliminar la dicotomía que existía sobre las consideraciones que se hacían sobre la luz al introducir el principio que más tarde se haría famoso como relatividad.
L a luz es, de acuerdo a la visión actual, una onda, más precisamente una oscilación electromagnética, que se propaga en el vacío o en un medio transparente, cuya longitud de onda es muy pequeña, unos 6.500 Å para la luz roja y unos 4.500 Å para la luz azul. (1Å = un Angstrom, corresponde a una décima de milimicra, esto es, una diez millonésima de milímetro).
Por otra parte, la luz es una parte insignificante del espectro electromagnético. Más allá del rojo está la radiación infrarroja; con longitudes de ondas aún más largas la zona del infrarrojo lejano, las microondas de radio, y luego toda la gama de las ondas de radio, desde las ondas centimétricas, métricas, decamétricas, hasta las ondas largas de radiocomunicación, con longitudes de cientos de metros y más. Por ejemplo, el dial de amplitud modulada, la llamada onda media, va desde 550 y 1.600 kilociclos por segundo, que corresponde a una longitud de onda de 545 a 188 metros, respectivamente.

Espectro electromagnético.- La región correspondiente a la luz es una disminuta ventana en todo el espectro. La atmósfera terrestre sólo es transparente en la región óptica y de ondas de radio. El infrarrojo se puede observar desde gran altura con globos o satélites, al igual que los rayos g, rayos X, y la radiación ultravioleta.
En física, se identifica a las ondas por lo que se llama longitud de onda, distancia entre dos máximos y por su frecuencia, número de oscilaciones por segundo, que se cuenta en un punto, y se mide en ciclos por segundo (oscilaciones por segundo). El producto de ambas cantidades es igual a la velocidad de propagación de la onda.
Representación de una onda. Se llama longitud de onda a la distancia entre dos "valles" o dos "montes".
En el otro extremos del espectro electromagnético se encuentra la radiación ultravioleta, luego los rayos X y a longitudes de onda muy disminutas los rayos g.
La atmósfera terrestre es transparente sólo en la región óptica, algo en el infrarrojo y en la zona de ondas de radio. Por ello, es que la mayor información que hemos obtenido sobre el universo ha sido a través de la ventana óptica, aunque en las últimas décadas la radioastronomía ha venido jugando un rol sustancial en la entrega de conocimientos sobre el cosmos, proporcionando datos cruciales. Observaciones en el ultravioleta, rayos X y g, como así también de parte del infrarrojo, hay que efectuarlas con instrumentos ubicados fuera de la atmósfera de la Tierra. Sin embargo, es posible también obtener resultados en el infrarrojo con instrumentación alojada en observatorios terrestres empotrados a gran altura sobre el nivel del mar o con tecnología puesta en aviones o globos que se eleven por sobre la baja atmósfera, que contiene la mayor parte del vapor de agua, que es la principal causa de la absorción atmosférica en el infrarrojo.

miércoles, 28 de marzo de 2007